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Abstract-This document presents solutions to the ferroelectric wave equation with boundary conditions
for a one-dimensional multilayered device. The internal losses of the device are considered through the use
of constitutive equations that include the time-dependent response of the materials. The constitutive
equations were chosen with T and E as dependent variables so that output power could be calculated
readily from the transducer geometry and the load. The results are in agreement with experimental data
presented herein.

\. INTRODUCTION
The transmission of electric and acoustical energy through a multilayered ferroelectric device is
described by the propagation of the electric and the acoustic waves from the first to the final
layer of the device. As these waves propagate, it is possible for reflections to occur at all
interfaces between layers so that only part of the incident energy is transmitted into the next
layer. Reflections, however, account for only part of this loss of amplitude. Internal loss
mechanisms, of which dielectric relaxation and viscous attenuation are well known examples,
add several forms of damping that become very important at high frequencies and at all
frequencies for which reflections are minimal. Like reflections, this material attenuation is
frequency-dependent.

The major aspect of the design of such a device is the determination of the frequency for
which the combined effects of reflections and material dissipation are minimum. The solution to
the piezoelectric wave equation with appropriate boundary conditions can predict this
frequency if the material dissipation is included. If this dissipation is not included, the solution
is not bounded at frequencies of zero reflection and infinite output voltages and currents are
predicted.

In this paper a one-dimensional model is analyzed. The wave equation and boundary
conditions to be solved are appropriate for the five-layer one-dimensional device shown in Fig.
J. In this figure,layers I and 5 are the ferroelectric ceramic transducers; layers 2 and 4 are
conductive bonds; and layer ~ is a conductive barrier. All materials are assumed to be
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Fig. I. Transducer geometry. Layers I and 5 are piezoelectric transducers. Layers 2 and 4 are conductive
bonds. Layer 3 is a conductive barrier.

949



950 MAJUON L. HODGDON

dissipative. The electroded surfaces at X3 = ± d, the conductivity of the bonds and the barrier
and the smoothness of the bonds are considered ideal. In this analysis, the one-dimensional,
longitudinal waves propagate in the X3 direction. The boundary conditions account for the
reflections and incomplete transmissions, while the attenuation caused by the materials them
selves is included in the constitutive relations of the materials.

2. CONSTITUTIVE ASSUMPTIONS

The constitutive relations for the ceramic layers can be expressed as [I]

11 d
T(x, t) = c(O)S(x, t) + 0 dt c(t - 'T)S(x, 'T) d'T - hv(O)D(t)

(I)

and

I'd
E(x, t) = - hs(O)S(x, t) - 0 dt hs(t - 'T)S(x, 'T) d'T +(3(O)D(t)

(2)

The functions c, hv, hs, and (3 are assumed to have exponential time~dependence. Also, single
relaxation times are assumed [1]. Hence,

and

c(t) = c. - (c. - Ci) e- liTs,

hv(t) = hOt - (hOt - hOi) e-liTo,

hs(t) =hs• - (hs. - hSi ) e-I/TS,

(3)

where 'Ts and 'Tv are relaxation times for strain and electric displacements. The subscripts e and
i refer to equilibrium and instantaneous values.

Substituting for c and hv in eqn (I) and assuming

S(x, t) = S(x) eiwl

and

D(t) = D e iwl

(D is independent of x by Gauss's law for charge-free bodies),



Similarly,
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E = - hSiS(x) eiw' - hSt - hSi Sex) e-'I,s l' e(l/'s+iw), dT
TS 0

951

Performing the integrations and allowing t -+ 00 for the steady-state case considered here,
eqns (1) and (2) can be written as

where

and

T =c*S- hD*D

E = - hs*S + f3*D.

(4)

(5)

(6)

(7)

(8)

(9)

All of the values required in eqns (6)-(9) are not readily available. They are not specified by
ceramic suppliers and in some cases have never been determined [2]. In addition, the measure
ment of these time dependent material parameters is not trivial. However, available data from
suppliers and the literature can be used to obtain some reasonable values. Hopefully, experi
mentally determined material parameters for at least the commonly used ceramics will be
available soon.

The elastic parameters Ce. Ci and 'T's have been measured for the ceramic PZT 65/35 [3]. For
this case, Cis a relaxation function with C. = O.9748cj. The relaxation time is given as 0.14,."s at
room temperature (22°C). It is assumed that the above relationship between C. and Cj holds and
that 'T's is the same for aU ferroelectric materials to be considered here. Absolute values for Cj
and c, are determined by assuming that at 1kHz, the Cgiven by the manufacturer is equal to
the real part of c*, Re(c*). Such an assumption can be justified by examining the frequency
dependence of the imaginary part, Im(c*), given 'T's =0.14 ,."s. Values'for c* in terms of Cgiven by
the manufacturer are

R ( *) - +(0.9748 - 1.0)e C - Cj 1+ 2 2 Ci, W'T's

=cliv,n for W=211 x 1<Y and 'T's =0.14 ,."s.

Solving for Cit

Cj =1.02585 Cliven'

Substituting for Cj in eqn (6) yields

*=[1 02585 + 0,02585 +0.02585iwTS] .
C . 1+w2'T'i 1+W2Ti cllven. (10)
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Since no data is available for the piezoelectric parameters, the relative values for Cj and c,
above were used for the h's:

he - h, = 0.0252h;

hj = J.02585hg;ven

TS = 0.14 J.ls

To =0.20 J.lS from a measurement of To for PZT 65/35

h *= [I 02585 + 0.02585 +0.02585iwTS]h
S . I +W2Tl I +W2Tl gIVen

h *= [I 02585 + 0.02585 +0.02585 iWTs] h
o . 1+W2Tl 1+W2Tl given.

(II)

(12)

Data for the dielectric properties are usually given in terms of E. This poses no problem
since {3 = lIE. Manufacturers usually specify a loss tangent at some frequency, 10'

where ER and Ejm are the real and imaginary parts of the complex dielectric constant f* and
where Ei can be a negative number. From eqns (6)-(9),

Ee - Ej
fR = Ej +1 2 2

+W TO

and

(Ee- Ei)WTO
Eim = 1+ 2 2'

W To

Given tan 5 and 10, the ratio of (Ee - f;) to E; can be calculated. For example, for Channel 5500
material, tan 5 =0.02 and Ec =2.08523fj. Using

Egiven =Re(E*) at I =1.0 kHz and To =0.20 J.ls,

Ej = 0,47956Egiven'

Solving for {3:

{3e = l/Ee

{3i = I/f;

{3 *= [2 0852 _ 1.085 + 1.085iwTO] -.'. 1+ 2 2 1+ 2 2 EgIven'
W TO W TO

(13)

Equations (I) and (2) describe the conductive layers as well as the ceramic ones. In the
conductive layers, however, the piezoelectric coupling coefficients ho and hs and the dielectric
term {3 are zero. Material dissipation in these layers can also be handled similarly to that in the
ceramic with the elastic coefficient c becoming the complex c* where

Values for Cet Ci, and TS must be substituted into this expression to complete the analysis. It is
more common, however, to find the material dissipation expressed in terms of ex dB/m instead
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of in terms of relaxation time 'ts and instantaneous and equilibrium values of the elastic
coefficient. In these cases, the material dissipation can be handled by defining the complex
elastic constant in terms of a and the propagation constant kl instead of in terms of "s, c. and
Cj. This procedure is described in the next section.

3. THE BOUNDARY VALUE PROBLEM

From eqn (4), the wave equations for all five layers can be written as

a2ui n2 2 O' 2 3ax + j W Uj = , J = 1, , ,4,5

where

aT a2u
ax = p-;w-(Newton's second law)

and

~~ =0 (Gauss's law for charge-free regions);

and where

Uj = UI(x) ehor (particle displacement)

S·=~
I ax

nl = PICI*' PI = density in the jth layer.

For ease of the solution, all bonding materials and all ferroelectric materials are the same:

(14)

The conductive layers are also taken to be isotropic. Material dissipation in these layers can be
considered by redefining Ow in the following manner[4].

n2
W

2 =w2plcj* =the complex propagation constant squared

=(Ie, -iai,

where

k, = propagation constant for a lossy medium

== WVpJCI (1.0-i(~)) -112,

a =attenuation constant in nepers/m

w2

== T VPICj(UCj)

and Cj =(Aj +21£1) for longitudinal propagation in an isotropic medium. Solving for Cj*,

C * - w2 Pi J" - 2 3 4I - (k ")2' -,,",-Ia
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Solutions are assumed to be of the form

u,(x) = al cos fl,w(x + h) + b, sin fl,w(x + h)

U2(X) = Q2 cos fl 2w(x + I) + b2sin fl 2w(x + I)

U3(X) = Q3 cos fl 3wx + b3sin fl 3wx

U4(X) = a4 cos fl 2w(x - I) + b4sin fl 2w(x - I)

U5(X) = a5 cos fl,w(x - h) + b5sin fl\w(x - h),

(15)

where Un = particle displacement in the nth layer.
Boundary conditions are written for stress-free surfaces at x =:t d and for continuity of

stress and displacement at x = :t h and x = :t I.

T,(-d) = 0

TM)=O

T,(-h) = T2(-h)

u,(-h) = u2(-h)

T2(-1) = T3(-1)

U2(-1) =U3(-1)

T3(1) = T4(1)

U3(1) = U4(1)

T4(h) = Ts(h)

u4(h) = u5(h).

Substituting for T, S, and u, the boundary conditions are:

c,*{alfl,w sinfl1wA+ b1fl1w cos il,wA} = hD*D,

c,*{b,D,w}- c2*{a2D2w sin D2wc5 + b2D2w cos D2wc5} = hD*D1

a I - a2 cos D2wc5 + b2sin D2wc5 = 0

c2*{b2fl 2w} - c3*{a3D3w sin fl 3wl + b3D3w cos D3wl} = 0

a2 - a3 cos il3wl + b3sin fl 3wl = 0

c2*{b2fl 2w} + c3*{a3il3w sin fl 3wl- b3fl3w cos fl3wl} = 0

a4 - a3 cos fl3wl - b3sin fl 3wl = 0

cl*{bsil,w}+ c2*{a.il2w sin fl2wc5 - b.D.w cos il.wc5} = hD*D5

as - a4 cos il2wc5 - b4sin il2w8 = 0

CI*{- asil1w sin il1wA + bsfl1w cos il1uA} = hD*D5.

where

A= d - h,

8 = h-I,

and Dn = electric displacement in the nth layer.

(16)

(17)
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The electric displacement can be expressed in terms of input or output voltage by using

1X2

V=- Edx.
Xl

Substituting for E from eqn (5) and using D"c D(x),

Substituting for Ul from eqn (15) and rearranging,

Similarly,

The voltage input is specified by the problem. The output voltage depends on the load. For
the device in Fig. 1.

VOUI =ZIouh

where Z =impedance of the load assuming e"'" time dependence = «(l{R) + jwcrl,

IOUI =A, d~, = iwA,Ds,

and A, =area of the electrode on layer 5. Substituting and rearranging,

The final form for the boundary conditions is obtained by substituting for D from eqns (18)
and (19) and nondimensionalizing:

{
. hD*hs* } { hD*hs*.} -hD*Vill

al 1/1 SID 1/1- cI*f3* (1- cos 1/1) +bl 1/1 cos 1/1- Ct*f3* SIn 1)1 = f3*cI'" '

al{-:'~;~s* (1- cos 1/1)} +bl{1/1 - ~:~~* sin 1/1} - a2{~~:~ 1/2 sin 1)2}

{
C2*A } - hD"'V·

-b2 CI"'61)2COS1)2 = f3*C,,,,1II

al- a2 COS 112 +b2sin 1)2 = 0,

b2{~::~ 1/2} - a3h3 sin 1/3} - b3{1)3 cos 1)3} = 0

a2 - a3 cos 'lJ3 +b3sin 'lJ3 =0

b.{;::~ 112} +an'IJ3 sin 113} - b3{113 cos 'lJ3} =0

a. - a3 cos 'lJ3 - b3sin 'lJ3 =0

{ hD*hs*6 } {CI·.s hD*hs"'a.}
a, c2*(f3*A + iwZA) (1- cos 1/1) +b, c2"'A 'lJ1- c2*(f3*A +iwZA) SID 111
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711 :: il,w~

712:: il2wo
713:: il3wl

~::d-h

0:: h -I.

The solution to this problem (i.e. the determination of the output voltage and current) is
obtained by a computer program. For design purposes, the program is arranged to locate
resonances by searching through a frequency band for power peaks.

4. EXAMPLE

A device similar to the one shown in Fig. 1 was built and tested. The device used Channel
5500 ceramic discs, conductive epoxy bonds and a 51-mil aluminum barrier. The ceramic discs
were 0.5 in. thick and 1.5 in. in diameter. The bonds were approximately 6mils thick. The
output load for this device consisted of the 1.0-Mil 2o-pF input impedance of the storage
oscilloscope used in obtaining the data. The resonant frequencies for this device and the
amplitudes of the output voltages at these frequencies are presented in Fig. 2. The resonant

0.,...-------------------------,

-2

-4

~

~
0
p.

0 .-6r-I
Cl

S

-8

-10 ioo

o 5 10 15 20 25 30

5
Frequency (10 Hz)

Fig. 2. Measured resonances. Data show slightly broader resonances and small amounts of power
transmitted between resonances. Maximum power is transmitted at 117.0 kHz.
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frequencies were located by sweeping the applied signal through a frequency range and
observing the variations in output voltage and current from the device. The amplitudes of the
resonant voltages were measured with the input signal fixed to the corresponding resonant
frequency.

The numerical solution of the one-dimensional wave equation described in this paper
predicted similar resonant frequencies and amplitudes (Fig. 3). This solution used the following
parameters in its model of the experimental device [5, 8]

CI =1.4497 X 1011

C2 = 1.0287 X 1010

C3 = 11.83 X 1010

h = 2.1499 X 109 (ceramic only)

E = 7.349 X 10-9 (ceramic only)

PI = 7600.0 kg/m3

P2 = 1620.0 kg/m3

P3 = 2695.0 kg/m3

Q2 =0.0582 nepers/mm at I MHz

Q3 =7500 dB/m at 1GHz

11 = 6.35 X 10-3 m

8 =lAx 1O-4 m

I =0.6477 X 10-3 m

The results of two other calculations are shown in Figs. 4 and 5. In one of these calculations
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Fig. 3. Calculated resonances. Effects of mechanic:al dissipation and bonds are included. Maximum power
is transmitted at 114.7 kHz.
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Fig. 4. Calculated resonances without the effects of mechanical dissipation and bonds. Values shown are
the last finite value calculated before resonance. Note that some values are in the kilowatts range.

Maximum power is transmitted at 2.2 MHz.
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Fig. S. Calculated resonances with the effects of mechanical dissipation. The effect of bonds is ignored.
Maximum power is transmitted at 146.0 kHz.
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(Fig. 4) the effects of the bonds and the material dissipation were not included [8]. Note that for
this case, the amplitudes of all resonances are infinite. The finite values shown are the last finite
values calculated before resonance. The results shown in Fig. 5 were obtained by solving the
wave equation described in this paper with 8 =0 so that the effect of the bonds was not
included.

Figures 2-5 show only the resonant peaks. To display the data, power transmission at
frequencies other than the resonant frequencies is set to -0.0. In both the measured and the
calculated cases, resonances are broader and between resonances some power is transmitted.

5. CONCLUSION

Figures 2 and 3 illustrate that the theoretical method presented in this paper has a high
positive correlation with experimental data. The numerical solution could be improved by
obtaining proper values for relaxation time and for other material parameters, especially in the
piezoelectric case. Nonlinear attenuation is also an important factor to be considered because
of its potential effect on energy transmission at resonance.
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